What can quantum optics say about computational complexity theory?
نویسندگان
چکیده
Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
منابع مشابه
Some Observations about Relativization of Space Bounded Computations
In this column we explore what relativization says about space bounded computations and what recent results about space bounded computations say about relativization. There is a strong belief in computational complexity circles that problems which can be relativized in two contradictory ways are very hard to solve. We believe that such problems can only be solved by proof techniques that do not...
متن کاملEnsemble versus Individual System in Quantum Optics
Modern techniques allow experiments on a single atom or system, with new phenomena and new challenges for the theoretician. We discuss what quantum mechanics has to say about a single system. The quantum jump approach as well as the role of quantum trajectories are outlined and a rather sophisticated example is given.
متن کاملThe weakness of CTC qubits and the power of approximate counting
We present two results in structural complexity theory concerned with the following interrelated topics: computation with postselection/restarting, closed timelike curves (CTCs), and approximate counting. The first result is a new characterization of the lesser known complexity class BPPpath in terms of more familiar concepts. Precisely, BPPpath is the class of problems that can be efficiently ...
متن کاملThe computational landscape of general physical theories
The emergence of quantum computers has challenged long-held beliefs about what is efficiently computable given our current physical theories. However, going back to the work of Abrams and Lloyd, changing one aspect of quantum theory can result in yet more dramatic increases in computational power, as well as violations of fundamental physical principles. Here we focus on efficient computation w...
متن کاملQuantum Computing in Complexity Theory and Theory of Computation
Traditionally, complexity theory has concerned itself with algorithms run by classical computers. With the recent developments in quantum computing, complexity theorists have begun considering just how quantum algorithms fit into the picture. After a brief introduction into classical complexity theory, we consider what is known and what is speculated about the relationship of the class of probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 114 6 شماره
صفحات -
تاریخ انتشار 2015